Team members are either social scientists who are acquainted with formal and ICT methods, or computer scientists or modelers who have been working in social science fields. Current research interests include the study of knowledge dynamics in various communities, notably those of the digital public space, by relying on methods borrowing both to ICT sociology, social network analysis, public sphere studies, on one side, and to complex system modeling, textual corpora analysis and NLP, and AI methods, on the other side.

Two of the main focus points of the team relate to socio-semantic dynamics and algorithms, respectively supported by an ERC Consolidator grant, Socsemics and an ANR collaborative grant, RECORDS.

Socio-Semantics Dynamics

Knowledge dynamics are crucially influenced by the shape of interactions i.e., the underlying social network, and the distribution of information, specifically their joint evolution. The team is very much involved in understanding what we denote as socio-semantic dynamics, both from a descriptive viewpoint (by developing methods to appraise the combined configuration of information and interactions) and a normative viewpoint (by proposing intrinsically socio-semantic models, intertwining social and semantic dynamics).

Recent publications
  • Mangold, L., & Roth, C. (2023). Generative models for two-ground-truth partitions in networks. Physical Review E, 108(5), 054308. [open access version]
  • Roth, C., & Hellsten, I. (2023). Socio-semantic configuration of an online conversation space. Social Networks, 75, 186–196. [open access version]
  • Menezes, T., Pottier, A., & Roth, C. (2023). The two sides of the environmental Kuznets curve: A Socio-semantic analysis. OEconomia, 13(2), 279–321. [open access version]
  • Roth, C. (2022). Resilience of socio-semantic bubbles. In E. Lazega, T. A. B. Snijders, & R. P. M. Wittek (Eds.), A Research Agenda for Social Networks and Social Resilience, 145–164. Edward Elgar Publishing. [publisher version]
  • Roth, C., St-Onge, J., & Herms, K. (2022). Quoting is not Citing: Disentangling Affiliation and Interaction on Twitter. Complex Networks & Their Applications X, 705–717. [publisher version]
  • Medeuov, D., Roth, C., Puzyreva, K., & Basov, N. (2021). Appraising discrepancies and similarities in semantic networks using concept-centered subnetworks. Applied Network Science, 6,66. [open access version]
  • Roth, C., & Basov, N. (2020). The socio-semantic space of John Mohr. Poetics, 78(1), 101437. [publisher version]
  • Baltzer, A., Karsai, M., & Roth, C. (2019). Interactional and Informational Attention on Twitter. Information, 10(8), 250. [publisher version]
  • Lerique, S., & Roth, C. (2018). The semantic drift of quotations in blogspace: A case study in short‐term cultural evolution. Cognitive Science, 42(1), 188–219. [open access version]
Related grants

Socsemics (2018-2023) is supported by an ERC Consolidator funding and is directed by Camille Roth. It aims at developing a set of integrated methods to address the possible existence of interactional and informational “bubbles” in the digital public space.
More information on the project website.

The team also collaborates with the Center for German and European studies (St-Petersburg / Bielefeld) under an RSF-funded multi-year multi-institution project called “Creation of knowledge on ecological hazards in Russian and European local communities” where socio-semantic dynamics are a focal point.


The team studies the effect of algorithms, from both a computational and a sociological perspective. Computationally, we focus on specific algorithmic contexts (such as video or music streaming platforms) to examine the potential behavioral biases induced by algorithmic recommendation. Sociologically, we study the socio-technical background underlying the conception of algorithms, for instance by carrying out interview-based surveys of developers to understand the implementation gap between desired algorithmic principles and actual coding practices.

Recent publications
  • Poiroux, J., Maudet, N., Pineau, K., Brulé, E., & Tabard, A. (2023). Design Indirections. Computer Supported Cooperative Work: CSCW: An International Journal. [publisher version]
  • Roth, C., & Poiroux, J. (2022). L’écriture guidée du code. Recherches En Sciences Sociales Sur Internet, 11, 3429. [open access version]
  • Shakespeare, D., & Roth, C. (2021). Tracing Affordance and Idem Adoption on Music Streaming Platforms. Proc. of the 22nd Int. Society for Music Information Retrieval Conference. ISMIR ’21. [open access version]
  • Villermet, Q., Poiroux, J., Moussallam, M., Louail, T., & Roth, C. (2021). Follow the guides: disentangling human and algorithmic curation in online music consumption. Fifteenth ACM Conference on Recommender Systems, 380–389. RecSys ’21. [publisher version]
  • Roth, C., Mazières, A., & Menezes, T. (2020). Tubes and bubbles topological confinement of YouTube recommendations. PloS one, 15(4), e0231703. [open access version]
  • Roth, C. (2019). Algorithmic Distortion of Informational Landscapes. Intellectica 70 (1): 97–118. [publisher version]
Related grant

The ANR-funded grant RECORDS (2020-2023) focuses on the understanding of practices surrounding online content platforms, and specifically in the context of musical streaming through a unique partnership with one of the major platforms in this area, Deezer.
More information on the the project website.

Miscellaneous computational social science

Selected publications
  • Mazières, A., Menezes, T., & Roth, C. (2021). Computational appraisal of gender representativeness in popular movies. Humanities and Social Sciences Communications , 8(1), 1–9. [open access version]
  • Gravier, M., & Roth, C. (2020). Bureaucratic Representation and the Rejection Hypothesis: A Longitudinal Study of the European Commission’s Staff Composition (1980–2013). Journal of Public Administration Research and Theory, 30(1), 4-21. [publisher version]
  • Roth, C. (2019). Digital, digitized, and numerical humanities. Digital Scholarship in the Humanities, 34(3), 616-632. [publisher version]
  • Menezes, T., & Roth, C. (2019). Automatic discovery of families of network generative processes. In Dynamics on and of Complex Networks, Volume III: “Machine Learning and Statistical Physics” (pp. 83-111). Springer, Cham. [open access version]
  • Mazières, A., & Roth, C. (2018). Large-scale diversity estimation through surname origin inference. Bulletin of Sociological Methodology, 139(1), 59-73. [publisher version]