News

11 posts

New ANR-funded grant called “RECORDS”

The team hosts a new ANR-funded grant called “RECORDS” (2020-2023), focused on the understanding of practices surrounding online content platforms, and specifically in the context of musical streaming through a unique partnership with one of the major platforms in this area, Deezer.

The project generally aims at documenting the diversity of practices and behaviors on streaming platforms, understanding the effects of manual and algorithmic content recommendation, and describing the potential spatial diffusion of artists and works. RECORDS articulates quantitative and qualitative empirical protocols, by relying both on a unique source of usage data stemming directly from the platform (comprehensive listening histories on millions of users on several years) and on a large-scale survey (featuring tens of thousands of respondents) and associated interviews with a selection of consenting participants.

The project gathers about 25 researchers of diverse backgrounds including sociology, computer science and geography. It is being supervised byThomas Louail (Géographie Cités), Philippe Coulangeon (Observatoire Sociologique du Changement), Camille Roth (Centre Marc Bloch), Jean-Samuel Beuscart (Orange Labs SENSE) and Manuel Moussallam (Deezer R&D).

The kick-off meeting will take place on two days in June 2020 at the Centre de Colloques of Campus Condorcet in Aubervilliers.

Welcome to Quentin Villermet

Quentin Villermet just joined the team for a five-month MSc research internship on music recommendation algorithms and their impact on listening practices under the supervision of Camille Roth and Jérémie Poiroux and within the new ANR project “RECORDS”. Quentin has a background in artificial intelligence and his interests include bio-inspired AI, statistics and network infrastructure. More information about him may be found on his LinkedIn profile.

Sunbelt 2020 & NetGLoW 2020 : call for abstracts / socio-semantic session

Sunbelt is a the main venue for social network analysis and its 40th edition will take place in Paris in June 2020. As member of the scientific organizing committee, Camille Roth is pleased to announce the call for abstracts, oral presentations and posters. Proposals should be submitted by January 31, 2020 through this link.

Of particular interest to the team is the session “Advances in Socio-Semantic Network Analysis”, led by Iina Hellstein and co-organized by Nikita Basov, Johanne Saint-Charles, Adina Nerghes and Camille Roth. We particularly encourage submissions for this session, whose description follows.

A related session will also also take place during the conference Networks in the Global World (St. Petersburg, July 7-9, 2020): the team further encourages submissions to the “Semantic and Socio-Semantic Networks” session by February 10, 2020.

Sunbelt 2020 session on “Advances in Socio-Semantic Network Analysis”
Social actors (stakeholders, group members, organizations) are linked (or separated) both by their social ties, and the content (knowledge, beliefs, frames, claims) they share (or do not share) in their communication. This interplay between the social relationships and the content of communication is increasingly approached as a socio-semantic network intertwining social and cultural, or cognitive and relational realms, where meanings and interactions coevolve.

This organized session addresses the recent advances in socio-semantic network analysis, and invites theoretical, methodological and empirical papers contributing (but not limited) to the following themes: (1) Theorizing relationships between social structure and meaning structure; (2) Qualitative, quantitative or mixed methods to relate meaning and social relationships; (3) Multivariate socio-semantic networks; (4) Relations between semantic similarity and social ties; (5) Combining relations between stakeholders and their frames; (6) Connecting macro- and micro-level social and semantic network patterns.

Automatic Discovery of Families of Network Generative Processes

Telmo Menezes had the opportunity to present his last paper with Camille Roth entitled “Automatic Discovery of Families of Network Generative Processes” and published earlier this year [SpringerLink] [arXiv], during an oral session at the Complex Networks 2019 conference in Lisbon.

This work relies on a machine learning approach introduced by them some years ago for automatically discovering plausible and human-understandable generators that fit and help explain observable complex networks. Recently, they expanded this work to identify families of generators, and demonstrated its application in discovering a small number of such families within a large corpus of facebook ego networks. The abstract of the presentation in Lisbon offers a brief overview and can be found here (p. 225), the presentation is here.

Quali-Quantitative meeting – December 2019

The Computational Social Science Team organizes bimonthly internal meetings aimed at discussing “quali-quantitative” approaches. The point of these meetings is to present the work-in-progress carried out within the Pole’s framework and also to offer methodological workshops for training in digital approach (database generation, corpus construction, processing, and so on.). It is thus a forum for dialogue capable of generating new qualitative-quantitative research questions within the Centre Marc Bloch. Please note it will progressively transform into a computational social science seminar open to an outside audience.

In December 2019, we were pleased to listen to:

  • Mirjam Dageförde who presented her statistical work (with Emiliano Grossman) about “Selfish, not social! How voters derive their policy preferences”
  • Jérémie Poiroux about filter bubbles that Twitter users possibly contribute to build. This work was part of the Algodiv project and will be continued with Camille Roth. The presentation can be found here (in French).

Interactional and Informational Attention on Twitter

Our paper called “Interactional and Informational Attention on Twitter”, by Agathe Baltzer, Marton Karsai and Camille Roth, just got out in Information 10(8), and is featured on its cover page. This work appraises the distribution of attention at the collective and individual level on Twitter, and both from a social (users) and semantic (topics) viewpoint. We exhibit the existence of socio-semantic attentional constraints and focus effects.

Neurons spike back

This article by Dominique Cardon, Jean-Philippe Cointet and Antoine Mazières retraces the history of artificial intelligence through the lens of the tension between symbolic and connectionist approaches. From a social history of science and technology perspective, it seeks to highlight how researchers, relying on the availability of massive data and the multiplication of computing power have undertaken to reformulate the symbolic AI project by reviving the spirit of adaptive and inductive machines dating back from the era of cybernetics.
The full english version may be accessed here.

Open doctoral and post-doctoral positions ! D/L: Sept 30, 2019

The team is now opening several doctoral students and post-doctoral researchers to work under the ERC Consolidator grant Socsemics, focusing on internet echo chambers and polarization. These offers take place in an interdisciplinary context and touch a variety of domains: computational social science, political science, NLP, information visualization, sociology of the internet, social network analysis, complex network modeling, essentially.

Detailed job offers may be found here with a deadline for application set at September 30th, 2019.

Please check the team presentation video and the “Socsemics” ERC project website

Extensive information on the scientific content and context are available in the above-mentioned job offers – interested applicants may nonetheless feel free to contact Camille Roth (roth[@]cmb.hu-berlin.de) to discuss this further.

Appraising algorithmic biases

“Algorithmic Distortion of Informational Landscapes”, by Camille Roth, has just been published in Intellectica 70(1):97-118 –
This review paper focuses on biases induced by recommendation algorithms. It explores the state of the art along a double dichotomy: first regarding the discrepancy between users’ intentions and actions (1) under some algorithmic influence and (2) without it; second, by distinguishes algorithmic biases on (1) prior information rearrangement and (2) posterior information arrangement.
An open-access pre-print may be downloaded here.